86 research outputs found

    Bounded-Distortion Metric Learning

    Full text link
    Metric learning aims to embed one metric space into another to benefit tasks like classification and clustering. Although a greatly distorted metric space has a high degree of freedom to fit training data, it is prone to overfitting and numerical inaccuracy. This paper presents {\it bounded-distortion metric learning} (BDML), a new metric learning framework which amounts to finding an optimal Mahalanobis metric space with a bounded-distortion constraint. An efficient solver based on the multiplicative weights update method is proposed. Moreover, we generalize BDML to pseudo-metric learning and devise the semidefinite relaxation and a randomized algorithm to approximately solve it. We further provide theoretical analysis to show that distortion is a key ingredient for stability and generalization ability of our BDML algorithm. Extensive experiments on several benchmark datasets yield promising results

    Memorization Capacity of Multi-Head Attention in Transformers

    Full text link
    In this paper, we investigate the memorization capabilities of multi-head attention in Transformers, motivated by the central role attention plays in these models. Under a mild linear independence assumption on the input data, we present a theoretical analysis demonstrating that an HH-head attention layer with a context size nn, dimension dd, and O(Hd2)O(Hd^2) parameters can memorize O(Hn)O(Hn) examples. We conduct experiments that verify our assumptions on the image classification task using Vision Transformer. To validate our theoretical findings, we perform synthetic experiments and show a linear relationship between memorization capacity and the number of attention heads

    Scaling Forward Gradient With Local Losses

    Full text link
    Forward gradient learning computes a noisy directional gradient and is a biologically plausible alternative to backprop for learning deep neural networks. However, the standard forward gradient algorithm, when applied naively, suffers from high variance when the number of parameters to be learned is large. In this paper, we propose a series of architectural and algorithmic modifications that together make forward gradient learning practical for standard deep learning benchmark tasks. We show that it is possible to substantially reduce the variance of the forward gradient estimator by applying perturbations to activations rather than weights. We further improve the scalability of forward gradient by introducing a large number of local greedy loss functions, each of which involves only a small number of learnable parameters, and a new MLPMixer-inspired architecture, LocalMixer, that is more suitable for local learning. Our approach matches backprop on MNIST and CIFAR-10 and significantly outperforms previously proposed backprop-free algorithms on ImageNet.Comment: 30 pages, tech repor

    EchoGNN: Explainable Ejection Fraction Estimation with Graph Neural Networks

    Full text link
    Ejection fraction (EF) is a key indicator of cardiac function, allowing identification of patients prone to heart dysfunctions such as heart failure. EF is estimated from cardiac ultrasound videos known as echocardiograms (echo) by manually tracing the left ventricle and estimating its volume on certain frames. These estimations exhibit high inter-observer variability due to the manual process and varying video quality. Such sources of inaccuracy and the need for rapid assessment necessitate reliable and explainable machine learning techniques. In this work, we introduce EchoGNN, a model based on graph neural networks (GNNs) to estimate EF from echo videos. Our model first infers a latent echo-graph from the frames of one or multiple echo cine series. It then estimates weights over nodes and edges of this graph, indicating the importance of individual frames that aid EF estimation. A GNN regressor uses this weighted graph to predict EF. We show, qualitatively and quantitatively, that the learned graph weights provide explainability through identification of critical frames for EF estimation, which can be used to determine when human intervention is required. On EchoNet-Dynamic public EF dataset, EchoGNN achieves EF prediction performance that is on par with state of the art and provides explainability, which is crucial given the high inter-observer variability inherent in this task.Comment: Published in MICCAI 202
    • …
    corecore